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In this review paper, we discuss the properties and applications of photonic computing and analog signal processing.
Photonic computational circuits have large operation bandwidth, low power consumption, and fine frequency control, ena-
bling a wide range of application-specific computational techniques that are impossible to implement using traditional
electrical and digital hardware alone. These advantages are illustrated in the elegant implementation of optical steganog-
raphy, the real-time blind separation of signals in the same bandwidth, and the efficient acceleration of artificial neural
network inference. The working principles and use of photonic circuits for analog signal processing and neuromorphic
computing are reviewed and notable demonstrated applications are highlighted.
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1. Introduction

Photonic circuits are a tool that enables a wide variety of appli-
cations in the domain of analog signal processing. The low
power consumption and high bandwidth allow for the imple-
mentation of operations from basic arithmetic to frequency
domain manipulation at speeds and efficiencies that their elec-
trical counterparts are unable to approach[1]. This high band-
width also enables massively parallelized computations through
the use of wavelength-division multiplexing (WDM). Their ana-
log nature allows for signal processing in continuous time, and
reduces the cost, memory requirements, and precision loss
resulting from the need to digitize massive amounts of data.
Not only are these advantages for applications involving optical
signals, such as optical fiber or free space optical communica-
tion[2–13], but they also show promise when applied to compu-
tation in general[14–24].
In recent years, there has been a push toward implementing

physical layer solutions to problems that are currently handled
in software. The rapid reconfigurability and deterministic oper-
ation of digital electronics make it appealing as a foundation for
solving any engineering problem, but it is not always the optimal
solution. The discrete nature of computers forces quantization,
which adds a small amount of noise to the measured signals.
It also forces discretization of incoming signals[25], which can
drive up the price of circuitry in high-frequency applications
and add latency to systems that may need to operate in real time.
Furthermore, in comparison to photonic circuits, digital com-
puters have drastically lower bandwidth, meaning that some

applications will force space-consuming and power-hungry par-
allelism to meet performance requirements, while some that are
not easily parallelizable become functionally impossible after a
certain threshold for speed requirements is crossed. Converting
solutions that are sub-optimally implemented by computers to
the physical layer removes these limitations and leverages the
unique advantages of the circuit paradigm to make elegant work
of complex, difficult, and performance-sensitive programming
tasks. In this review, we will address some of these problems that
photonic circuitry is uniquely qualified to solve.
Photonic circuits achieve many useful effects through the

strategic splitting and combining of signals. Linear mixing
through coupling or over-air transmission provides an avenue
for technologies like optical steganography, which aims to hide
communication signals by combining themwith noise[6,26]. This
phenomenon also causes interference in communication lines,
prompting the exploration of using photonic blind-source sep-
aration to recover signals as they were before mixing[2,5].
Combining these linear operations with nonlinearities caused
by excitable lasers[27] or resonator-based modulators[28] allows
for the creation of photonic neural networks, effectively allowing
any function to be created so long as the hardware requirements
can be met[15]. All of these capabilities show potential for
improving high-speed communication systems, as they require
throughputs that would overwhelm most analog electrical cir-
cuitry, and drive up the price of digital signal processing tech-
niques through increasingly high-speed analog-to-digital
converters. They also show promise for accelerating general
computation, as many of these devices are capable of being
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integrated into silicon wafers and used as application-specific
co-processors in tandem with digital and analog electrical
circuitry[18].
Photonic blind-source separation is a technique that uses

photonic circuits to manage interference in wireless communi-
cation systems[2–5], free-space optical communication sys-
tems[4], and optics-based sensor technologies[29,30]. It takes
advantage of the rich amplitude information present in multi-
input-multi-output signal processing systems to separate signals
that exist in the same electromagnetic bandwidth, circum-
venting the limitations of traditional frequency filtration and
multiplexing techniques. Digital blind-source separation was
first proposed in 1991 in Ref. [31], alongside independent com-
ponent analysis, which is a dimensionality reduction technique
invented for this purpose. Photonic blind-source separation was
first demonstrated in 2018[2], where the high throughput of pho-
tonic arithmetic circuitry was leveraged to separate communica-
tion band RF signals in real time. Since then, several techniques
for improving the method have been explored, such as sub-
Nyquist optical pulse sampling[32], genetic algorithms for PC/
IC searching[33], and hybrid signal domain systems for increas-
ing the likelihood of separability[4,5].
Optical steganography is another technique that is built upon

the advantages of photonic signal processing circuits. This tech-
nique aims to disguise sensitive communications as system
noise, preventing eavesdroppers from interpreting, recording,
or potentially even noticing them[6–12]. It takes advantage of in-
expensive, easily implemented spectral manipulations to hide
the sensitive signals, acting as a hardware keyspace that is very
difficult to search as an unintended recipient[6,9,26]. The tech-
nique was first introduced in 2009 in Ref. [6], where dispersive
elements were used to hide a narrow band communication sig-
nal in a massively multiplexed communication network. Since
then, other techniques for performing optical steganography
have been introduced, including noise based stealth communi-
cation[9,26] and optical phase-mask encryption[11].
Photonic neuromorphic computing is a field that aims to

leverage the advantages of analog photonic circuits for high-
performance computing tasks. In particular, it leverages the
high speed, wavelength-division parallelism, and low power
consumption of photonic arithmetic operations to accel-
erate the calculations that make up artificial neural net-
works[14,16–24,27,28,34–37]. This enables simple yet powerful
networks to solve complex tasks at the speed light transmis-
sion[13]. It also promises to efficiently accelerate deeper neural
network inferences to speeds that rival modern GPU technol-
ogy[19]. A pioneering work of photonic neuromorphic comput-
ing was introduced in 2009 in Ref. [14], where it used photonic
spike processing to perform the operations of a spiking neural
network. Since then, multiple techniques have been made to
improve upon this design, including tunable weight banks made
from interferometers[14,35], tunable resonators[15–17], or phase-
change elements[22–24,34], as well as a variety of output designs
including all-optical thresholders[22,23], electro-optical nonlin-
ear laser gates[28,36], and electrical sampling and reproduction
circuitry[18,19,24]. Today, it is showing particular promise in

the fields of high speed neural signal processing[13,37] and
machine vision acceleration[19–24].
In this paper, we review the principles and emerging develop-

ments in each of these sub-fields of computational photonics.
In Section 2, we review methods of photonic blind-source sep-
aration and their applications in interference cancellation and
multiplexing. In Section 3, we review methods of physical layer
steganography, and analyze them in terms of signal quality,
security, data rate, and public channel coexistence. In Section 4,
we introduce the principles of photonic neuromorphic comput-
ing and discuss both through-drop resonator and phase-change
material methods in their respective subsections. We will also
analyze different hardware architectures that are native to each
technology and the software architectures for which they are
most advantageous.

2. Photonic Blind-Source Separation

Blind source separation (BSS) is a technique that aims to solve
the problem of separating interference signals from signals of
interest without knowing anything about the nature of either
signal[2–4,31,38,39]. This is commonly referred to as the “Cocktail
Party Problem,” which is illustrated in Fig. 1. In this scenario,
three transmitters (represented by humans speaking at a cocktail
party) are communicating with three receivers (represented by
microphones). Each receiver receives a scaled copy of each mes-
sage, additively combined together to form a single signal. This
forms what is referred to as a “multi-input-multi-output”
(MIMO) system, where the three intended recipients have access
to all three received messages and are tasked with interpreting
their intended message as it exists in the mixtures[39]. Humans
are able to do this naturally, taking advantage of the direction-
ality of their ears to localize and attend to their source of interest
while ignoring other conversations, which can be considered
“interference” in this context. This human intuition has led to

Fig. 1. Diagram illustrating the cocktail party problem with 3 transmitters and
3 receivers.
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an emergence of sciences aimed toward using amplitude infor-
mation resulting from spatially separated sources and receivers
to manage electromagnetic signal-signal interference that can-
not be managed traditionally.
An MIMO system with two inputs and two outputs can be

mathematically described as the following[2,32]:

�
x1
x2

�
=
�
a11 a12
a21 a22

��
s1
s2

�
, (1)

where s1 and s2 are the instantaneous amplitudes transmitted by
the transmitters, x1 and x2 are the instantaneous amplitudes
seen by the receivers, and aij is the coefficient applied to the
jth transmitted signal at the ith receiver. This equation can be
generalized to any number of inputs and outputs by expressing
it in its matrix/vector form,

X = AS, �2�

where S is the transmitted signal vector, X is the received signal
vector, and A is referred to as the “mixing matrix.” Because the
signals are linearly combined as they propagate through air,
the separation of those signals can be modeled by the inverse
operation,

S = A−1X: �3�

A−1 is then referred to as the “de-mixing matrix.” Assuming
the combination of signals through air is linear, this equation
implies that the signals are uniquely separable so long as the
mixing matrix of the system is invertible. The invertibility of
the matrix can be described continuously using the condition
number of that matrix[40]. This can be calculated as

cond�A�: = kAk�kA−1k, (4)

where

kAk: =maxj

�Xn
i=1

jai,jj
�
: (5)

The condition number of a singular matrix is infinite. Finite
values for the condition number quantify the sensitivity of
the inversion to inexact matrix elements that can be caused
by chaotic factors like statistical variance, floating point error,
or device non-idealities[4,40]. Larger condition numbers describe
more sensitive systems, for which the blind-source separation
algorithm will generally perform worse. Smaller condition num-
bers describe matrices that can tolerate more inaccuracy in their
inversion, resulting in a more successful de-mixing. In practice,
mixes tend to be well conditioned when coefficients correspond-
ing to a given transmitted signal are different for different
received signals, or, more formally,

aij ≠ aik ∀ i, j ≠ k: �6�

This condition can be met by sufficiently spatially separating
the transmitters and receivers, such that the transmitted signals
take drastically differing paths to each receiver. This require-
ment makes implementation of BSS systems in mobile devices
and smaller embedded systems difficult, as the spacing of
receiver antennae is constrained[4].
The problem of BSS requires that themixingmatrix be treated

as an unknown, and it tasks the system with determining the
elements of the de-mixing matrix using only the information
present in the X vector. The most common techniques for
accomplishing this are principle component analysis (PCA),
proposed in Ref. [41], and its variant, independent component
analysis (ICA), proposed for this application in Ref. [31]. These
methods use statistical analysis to cross-correlate the two
received signals and determine the vectors in the multi-signal
hyperspace along which each independent signal is encoded.
In the two-signal case, the unit vector in the direction of the

first projection axis can be described in terms of its angle with
respect to the x1 axis, θ, using the following:

w!�θ� = �cos�θ�, sin�θ��: (7)

By projecting the signals onto this new axis, the resulting out-
put signal will be shown to have some variance about the zero
point. This variance can be quantified by the second-order
moment of the signal across all available time. This quantity
can be expressed as the following:

hm2it�θ� = q1 � q2 cos�2�θ − θ0��, (8)

where hm2it denotes the second-order moment across time, and
q1, q2, and θ0 are constants set by the mixing matrix. θ0 is the
true angle that the first principle component exists at, and the
amplitude of that principle component is equal to q1 � q2.
The second principle component is orthogonal to the first and
has an amplitude of q1 − q2. These q parameters are easily cal-
culable using a pseudo-inverse after any guessed value of θ. The
Gauss–Legendre pseudo-inverse is credited as being sufficiently
noise immune and computationally efficient for this application
in [2]. Evaluating q1 and q2 for a given θ value results in a fitting
error, which can be minimized with successive guesses of θ
using an optimization algorithm such as gradient descent[2]

or genetic algorithms[33]. This optimization problem is simple,
as the objective function is convex and bounded on the interval
�0, π�[2]. Once the second-order moment of the projection is

sufficiently minimized, w! can be taken as the first principal
component, and its orthogonal unit vector can be taken as
the second.
Once the process of PCA is finished, the projections could be

taken as is[3]. However, the optimal projection axes are not nec-
essarily orthogonal, and PCA assumes that they are. In order to
allow for the projection axes to take on non-orthogonal posi-
tions, which will provide a closer fit with less interference, the
PCs must be used to perform ICA. The key step to ICA is called
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“whitening,” wherein each of the signals is rescaled such that
they all have the same variance, with the intuition being that this
will move the optimal projection axes into orthogonal positions.
The unit vector in the direction of this new projection axis can be
mathematically described as

w!= UΣU−1�cos�ϕ�, sin�ϕ��, (9)

where UΣU−1 is considered to be the whitening operation.
U is defined as the rotation matrix for angle θ0, and Σ is a diago-
nal scaling matrix, which scales the signals along the PC axes
before U−1 rotates them back. In the two-dimensional case,
the first element of U should be 1, and the last should be
�q1 � q2�=�q1 − q2�. Once the whitening process is completed,
the new projection angle ϕ can be optimized using a similar
method to θ. This time, the fourth-order moment of the signals
is considered,

hm4it�ϕ� = p1 � p2 cos�2�ϕ − ϕ0�� � p3 cos�4�ϕ − ϕ0��: (10)

This moment can be minimized using the same process as the
second-order moment, resulting in a new rotation angle ϕ0.
Defining the rotation matrix for this angle to be V, the final
de-mixing matrix can then be expressed as

A−1 = VUΣU−1: �11�

To implement this de-mixing in the physical layer, the
received signals need to be aligned in time, scaled by the ele-
ments of the row of the de-mixing matrix that corresponds with
the signal of interest, and then additively combined to cancel the
interference signal out. A typical schematic for a system that per-
forms these operations with photonic circuit elements is shown
in Fig. 2. This diagram is intended to receive RF signals through
antennae x1 and x2. The amplitude modulators encode the RF
information into optical signals, and the tunable optical delays
align those signals in time. The tunable attenuators are able to
apply a scaled version of the de-mixing weights passively, and
the combiner adds the two paths together to facilitate the can-
cellation. The resulting separated signal is then converted back
to electrical voltage and sampled with an ADC so that the signal
may be interpreted by a computer. Popular photonic implemen-
tations of this technique tend to use tunable micro-ring resona-
tors as the variable attenuators in the optical path. This allows
for a high depth of modulation, fast tuning, and WDM for
reducing the footprint of the circuit. In addition, it enables an
effective precision of up to 9 bits in implementing a given attenu-
ation constant, which has been shown to be integral in attaining
a quality separation of signals. This precision is achieved via
thermal stabilization using feedback control and dynamic dith-
ering, along with cross-talk compensation via multi-channel
control algorithms. In a multiplexed BSS circuit, the signals
are typically separated into through and drop ports of the
micro-rings and subtracted using a bipolar photodiode, rather
than an optical combiner[43,44].

The success of these systems is typically evaluated using the
signal-to-interference and noise-ratio (SINR) of the signal of
interest after cancellation. This can be calculated as the power
of the signal of interest divided by that of the difference between
the signal of interest and the resulting separated signal. If the
experiment is simulated, then the denominator should also be
made to include the variance of any noise the signals are likely
to encounter along their optical path. In a previous experiment,
we found that the SINR of a separation attempt in dB is loosely
inversely correlated to the condition number of the mixing
matrix that is being used[4]. This means that there is a fairly wide
range of tolerance for ill-conditioned matrices that are separable
to a degree that enables error-free communication. Though this
range is not infinite, there are a number of techniques that have
been developed to combat this vulnerability, such as hybrid RF
and optical systems that ensure well-conditioned mixes by guar-
anteeing that one of the cross-channels has a mixing matrix
coefficient of zero[4].
Some key advantages of this technology lie in the frequency

independence of the separation algorithm. Because spectral
methods are not used for the separation process, signals can
safely exist in the same bandwidth as each other. This enables
a type of space-division multiplexing that does not require sep-
arate transmission mediums for each signal[45] and shows
potential for increasing the capacity of fiber optic communica-
tion networks[38,39,42]. In addition, because the algorithm makes
no attempt to digitally reproduce the signals being analyzed, the
sampling circuitry is capable of working well below the Nyquist
sampling limit[2,3]. This allows systems to use much simpler and
cost-effective sampling circuitry while working on much higher
data rates than that traditional digital signal processing methods
are capable of handling[32].
One interesting application for this technology is the pursuit

of RF spectrum coexistence in broadcasting systems. This deals
with the problem of long-range RF transmitters strongly inter-
fering with nearby unintended recipients along the path to the
further intended receiver that is out of the line-of-sight. In a pre-
vious work[5], we proposed solving this problem by having the
transmitter generate a copy of the transmitted signal with a free-
space optical transmitter. This would allow unintended receivers
within the line-of-sight to use photonic BSS to cancel the trans-
mitted signal out of what they receive so that their signal of inter-
est can present uncorrupted. This method is also immune to the

Fig. 2. Schematic of a common single-output photonic BSS circuit. TD, tunable
delay; AM, amplitude modulator; TA, tunable attenuator; PD, photodiode; ADC,
analog-to-digital converter[42].
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problem of ill-conditioned mixes because the signal of interest
exists only as an RF signal. This forces the cross-channel coef-
ficient for the signal of interest to go to zero, which prevents the
condition number of the matrix from approaching infinity.

3. Optical Steganography

Steganography is a method of ensuring communication security
that focuses on keeping decryption attempts from occur-
ring, rather than focusing on stopping them from suc-
ceeding[6–11,26,46]. While optical cryptography is a powerful tool
for protecting the encrypted data[47], the presence of a digital
communication signal that needs to be decrypted can be enough
to prompt an attacker to record the signal and attempt to decrypt
the message digitally through brute force[9]. To avoid this, the
signal can be disguised as something that would appear incon-
spicuous to a potential attacker, preventing any decryption
attempt from being made in the first place. A helpful example
is file-type based steganography, which attempts to hide sensi-
tive digital data in the least significant bits of the pixel data in
image files or the amplitude data in audio files[46]. The less
important a signal appears to a potential eavesdropper, the more
theoretically secure the contained signal will be, so the natural
ideal condition is to use the physical layer to generate a signal
that does not appear to be a communication signal at all.
Optical steganography is the practice of using photonic cir-

cuits to perform steganography in the physical layer. The sensi-
tive signal in this practice is typically disguised as some form of
system noise, which an eavesdropper would likely attribute to
the sources of visible non-sensitive signals and discard[6,9,26].
This is a strong disguise to use, as it does not outwardly portray
that information is present in the stealth channel at all, effec-
tively requiring prior knowledge of the technique to prompt
an attempt to recover the hidden signal. This is also preferable
for the goal of increasing communication speeds, as digital tech-
niques like file-type based steganography require the deploy-
ment of a large portion of data space to make the signal seem
inconspicuous. While this tradeoff between channel capacity
and information security is, in some ways, inherent to the nature
of stealth communication, photonic circuits have been demon-
strated to present a wide variety of opportunities for increasing
the security of a communication system that involve little to
no channel capacity waste[6–11,26]. In addition, the photonic cir-
cuits that perform these tasks almost always involve some non-
standard receiver architecture, without which the signals tend
not to appear to carry information at all. This requirement effec-
tively acts as a massive key space that secures the information,
and the relatively high sensitivity and low variability of certain
components protect strongly against brute force attacks even if
an attacker can guess the general architecture of a stealth
receiver[6,9,26].
One method of performing optical steganography is through

the use of intentionally introduced wavelength dispersion. This
method is unique to narrow bandWDM channels, as it relies on
spectral filtering to separate the public channel from the private

channel before detection[6–8]. Passing signals through a dispers-
ing element widens them in time and suppresses their ampli-
tude, making them appear insignificant in comparison to
normal communication signals. To recover the signal, the signal
can be re-dispersed in the equal and opposite manner, returning
the signal to the high amplitude communication signal it was
generated as. A circuit that accomplishes this method of optical
stealth communication is shown in Ref. [7]. This circuit uses a
pair of chirped fiber Bragg gratings (CFBGs) in combination
with optical circulators to disperse the signals. This has the
added benefit of spectrally filtering the incoming signals, such
that the wavelengths of interest are reflected back through to
the output port of the circulator, while the remaining wave-
lengths are passed through to an optical power sink. This
method is very time and material efficient for this reason, as
no additional filtration hardware or post-processing algorithms
are necessary to recover the stealth signal from the mix with
public access signals.
One advantage of dispersion-based steganographymethods is

that they are effective for a variety of different modulation tech-
niques, making them very easy to include in existing optical
communication systems. In addition, compatibility with any
modulation format means that all axes that are used to encode
information are usable, so there is no sacrifice of channel capac-
ity required to gain the promised security so long as the required
signal quality characteristics aremet. That said, thismethod only
renders signals undetectable in time and does not effectively
change the spectral content. This leaves the method vulnerable
to detection by analyzing the optical spectrum present in the
transmission line. This vulnerability can be mitigated by imple-
menting this steganography method in a system that uses a type
of orthogonal signal multiplexing in the same spectral region,
such as code-division multiple access (CDMA). This ensures
that the optical spectrum of the public channel will appear
inconspicuous, as the amount of power contributed by the
stealth channel to the wavelength region of interest will be rel-
atively negligible in comparison to the total power in that region.
In the event of the stealth channel’s detection, a potential eaves-
dropper may still be deterred by the large potential key space
that is the dispersion reversing CFBG’s grating pattern and
the difficulty involved in searching that key space manually.
Another method of securing optical communications is

through the use of noise carrier signals[9–11,26]. These signals
are typically the product of the amplified spontaneous emission
(ASE) noise caused by erbium-doped fiber amplifiers (EDFAs).
Because of their wide spectral content, the coherence length of
these signals can be on the order of hundreds of micrometers.
Noise-based stealth communication systems take advantage of
this small coherence length by using a specific length of optical
delay to intentionally create an incoherent combination of
phase-modulated signals and unmodulated ASE noise. This
gives the resulting communication signal the time and frequency
domain appearance of noise that is inherent to fiber optical com-
munication systems, and it will continue to present as such even
in the event that a standard coherence detector is used to
demodulate the signal. Coherent detection of the signals will

Chinese Optics Letters Vol. 22, No. 3 | March 2024

032501-5



occur only when the difference in the optical delay between the
two paths of the coherence detector is equal to that of the trans-
mitter, at which point the output signal will appear as a combi-
nation of the stealth signal and beating noise caused by the
incoherent interference of the unmatched paths. A circuit that
implements this method of stealth communication is shown
in Fig. 3. In order to prevent the detection of encoded informa-
tion, this system elects to relinquish control over the amplitude
of the transmitted signal. This does decrease the information
capacity of the channel, though this comes with the benefit of
leaving the transmitted information functionally invisible in
both time and frequency unless the required demodulating tech-
nique is being used. The key space created by varying the optical
path lengths is very large, considering the high precision
required for a sufficiently matched receiver, though it is slightly
more vulnerable to brute force attacks due to the commercial
availability of tunable optical delay lines. This risk can be com-
pensated for by the addition of high frequency random phase
mask encryption[11] or by combining the modulation technique
with dispersion-based steganography to create an orthogonal
2-dimensional key space[10].
Because this method of steganography involves a unique

modulation technique, it is important to perform a noise analy-
sis of the technique to ensure an acceptable rate of error[12]. The
signal-to-noise ratio (SNR) of the system shown in Fig. 3 can be
modeled as

SNRstealth =
hIi2

σ2thermal � σ2shot � σ2ASE−ASE
, �12�

where I is the current supplied by the photodetector, σ2shot is the
variance of noise resulting from photodetector absorption,
σ2thermal is the variance of noise resulting from chaotic changes
in temperature throughout the system, σ2ASE−ASE is the variance
of noise resulting from incoherent ASE noise combination, and
h·i denotes the time average operator. The photodiode current
can be expressed in terms of parameters of the system as

hIi2 = �2RSspΔυopt�2, �13�

where R is the responsivity of the photodiode, Ssp is the power of
the ASE noise carrier, and Δυopt is the optical bandwidth of the
ASE noise carrier. The thermal, shot, and beating noise can be
expressed similarly in Eqs. (14), (15), and (16), respectively, as

σ2thermal = �4kBT=RL�FnΔf , (14)

σ2shot = 2qR�2SspΔυopt�Δf , (15)

σ2ASE−ASE = 4R22S2spΔυoptΔf , �16�

where kB denotes the Boltzmann constant, q is the charge of an
electron, T is the room temperature, RL is the load resistance of
the photodiode, Δf is the electrical bandwidth of the photo-
diode, and Fn represents any electrical amplifier gain between
the photodiode and the receiver. Substituting these expressions
into Eq. (12) and simplifying allows the SNR of the system to be
expressed as

SNRstealth =
Δυopt

Δf
�

�4kBT=RL�Fn
�2RSsp�2Δυopt �

q
RSsp

� 1

� : �17�

This equation shows that the SNR increases with the ASE
noise power, saturating as the beating noise begins to dominate
the other two types of noise. Increasing Ssp to the point of
allowing beating noise to dominate the system effectively
reduces the SNR expression to the following:

SNRstealth =
Δυopt
Δf

: �18�

This is a valuable result, as it does not motivate the designer of
the stealth transmitter to add arbitrarily high amplitude noise to
the system unnecessarily. It also demonstrates that the SNR can
be controlled simply by changing the ratio of the optical band-
width of the carrier to the electrical bandwidth of the photo-
diode, which should not affect the security of the transmitted
information at all[12].
The benefits of ASE-based optical steganography are most

readily apparent in the application of LiFi systems, which
attempt to use visible light to transmit communication data[48].
For this application, as well as other free-space optical (FSO)
communication techniques, wideband light sources are uniquely
preferable. This is due in part to the fact that light cannot pen-
etrate opaque materials, so transmitters must be inexpensive
enough to place in every room of a building[49]. LiFi also dem-
onstrates a particular demand for wideband sources, as it is
intended to use the light sources for illumination as well as com-
munication[50]. For these reasons, LiFi systems and FSO broad-
casting systems are both well suited for being secured via optical
steganography. A diagram of a circuit that implements optical
steganography in an FSO communication system is shown in
Fig. 4. This circuit provides a secure foundation upon which
FSO broadcasting systems are built for public use, as a potential
eavesdropper may not assume any data transfer is occurring at
all when attempting to observe the stealth channel without the
proper receiver.
One drawback of ASE-based steganography is that it has a

low rate of error-free communication due to the inherent preva-
lence of beating noise in the homodyne detection. Experimental

Fig. 3. Schematic of an ASE-based stealth communication system[9].
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results demonstrate stable communication requiring a bit rate
for on-off-keying as low as 1 GB/s[51]. Methods of generating
chaos through other forms of optical circuit noise have been
observed to improve the data rate of stealth communication sys-
tems, but at the expense of security, stability or implementation
complexity[52]. To eliminate the tradeoff, ASE noise can be gen-
erated externally and then leveraged to corrupt a non-chaotic
signal in amanner that is uniquely reversible. Commonmethods
for doing this involve phase-to-amplitude noise conversion,
which can be added to and removed from a signal using fiber
Bragg gratings. This eliminates the need for beating noise at
the receiver while still giving the data the time and frequency
domain appearance of noise[53].
Other non-standard carriers have been explored for optical

steganography as well. One carrier of particular promise is a fre-
quency comb, where independent copies of the baseband signal
are modulated onto each tone and then transmitted simultane-
ously. This enables multi-homodyne detection, where the signal
strength is scaled quadratically with the number of carrier tones
while independently accumulated noise is only scaled linearly.
This superlinear scaling of signal power allows the user to trans-
mit power with an irrecoverable optical SNR, both encrypting
the signal and giving it the spectral shape of pure noise. This,
combined with a spectral phase mask to hide the time-domain
waveform, provides security and steganography with data rates
as high as 40 GB/s while being completely agnostic to modula-
tion format[54]. These characteristics make this technique favor-
able for providing moderate security in applications where data
rate is of high importance.
Another non-standard carrier method is to use the bias port

of a Mach–Zehnder modulator to use public data as a subcarrier
for the private signal. By leveraging high-precision tuning meth-
ods, the bias point of the modulator can be switched between
two very close values, changing the shape of the public waveform
by an amount that is imperceptible to the human eye. By circu-
larly shifting the sampled vector into a 2-dimensional grayscale
image, a convolutional neural network can then examine the
data shape and classify which bias point was used to transmit
the data. This method of transmission is significantly slower,
with experiments showing a data rate of 195 MB/s, but it comes
with the benefit of having the data be almost completely imper-
ceptible without prior knowledge of its existence[55]. What is

more, because MZM bias does not need to be a precise param-
eter in traditional on-off-keying systems, any perceivable varia-
tion could be explained by device non-idealities in the
communication circuit, further encouraging a potential eaves-
dropper to discard the data as non-sensitive. It does not provide
analog cryptography by itself, but nothing about the method
prevents cryptography from being viable in combination with
it. This makes the method favorable for applications where data
rate is not very important but where security is paramount.

4. Photonic Neural Networks

As with any analog computing paradigm, a promising applica-
tion that pushes computational photonic circuits to their limit is
neuromorphic computing. This field involves the implementa-
tion of analog circuits that perform the calculations that artificial
neural networks perform in software. This has the advantage of
enabling processing speeds fast enough to meet the throughput
demand of real-time applications. In addition, the device inter-
actions of analog computational circuits consume far less power
than the equivalent series of digital operations on average,
meaning that the paradigm illustrates potential for reducing
the environmental impact of server computing companies as
well. In this section, we will introduce a variety of neuromorphic
photonic circuits and discuss the applications for which they
show particular promise.
The pioneering work of designing a photonic neural network

(PNN) was developed by the Lightwave Communications
Research Labs from Princeton University in 2009[14]. It used a
combination of optical combiners, tunable attenuators, Mach–
Zender interferometers, integrating silicon optical amplifiers,
and optical thresholders to make a photonic spike processor that
could operate at communication speeds. While this design was a
critical step forward for the technology, it suffered from a num-
ber of shortcomings that made it difficult to generalize to the
greater field of neural inference acceleration, namely, the circuit
size per input was far too high in this form. The use of MZIs for
input modulation prohibits the use of wavelength-division mul-
tiplexing for a large portion of the circuit, making it near impos-
sible to fabricate at a scale that would provide a useful amount of
model complexity. In addition, the all-optical nature of this
design posed challenges with implementing larger networks,
in that the next hidden layer of neurons in the network would
necessarily need to be a separate circuit, thus rendering percep-
trons with numerous hidden layers impossible to represent in a
cost-effective manner.
Further works in photonic neuromorphic computing have

been focused on solving this problem of implementing wider
and deeper neural networks in hardware[15,18,19,22]. While out-
put technology, output signal domain, and input/output signal
behavior are all of some consequence to the performance of
a PNN, by far the most promising area for improvement is
the method of implementing weighted addition. Improvements
to these technologies promise to better meet the demand for
increased fan-in, as well as to improve the precision of the

Fig. 4. Schematic of a chaos-based free-space optical stealth communica-
tion system[48].
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computation and the rate at which inferences can be made[19,43].
Two types of architecture have shown particular promise for this
application: through-drop resonator methods, which leverage
the thermally variable spectral response of micro-ring resona-
tors to variably weigh signals of a specific wavelength, and
phase-change material methods, which change the attenuation
constant of a waveguide over length to variably weigh any
wavelength. In Subsections 4.1 and 4.2, we will review the work-
ing principles, key innovations, and relevant applications of
through-drop resonator methods and phase-change material
methods, respectively. In Subsection 4.3, we will compare the
tradeoffs associated with each methods and review supporting
advancements that benefit them both.

4.1. Through-drop resonator methods

In order to increase the fan-in of these circuits, the weight imple-
mentation needed to be changed to aWDM-compatible variable
attenuator. Doing so would allow the arithmetic circuits to span
the footprint of only one waveguide, rather than requiring one
circuit for every input signal. The simplest way to achieve this
function is by abusing the gradual wavelength response of
variable wavelength resonators to specifically target and weigh
individual inputs. This can be done using mirco-ring resonators
(MRRs), which can be made wavelength-tunable by way of heat-
ing the ring to change its refractive index[16]. This method
reduces the footprint of the circuit considerably, with the new
bottleneck being found in the size requirements of the resona-
tors and the spacing of each resonator’s on-resonance point in
the optical spectrum, rather than in the number of parallel wave-
guides that can be fabricated[15].
An example of a photonic circuit that takes advantage of these

devices is shown in Fig. 5. As this figure illustrates, these MRRs
can be cascaded into one another, resulting in a 4-port device
with variable transfer curves. Because single-pole resonator cir-
cuits like this one interfere with one another in a resonator-like
fashion[57], the port diagonal to the input port effectively never
carries optical power, leaving three ports of significant interest
to designers. The port that is directly connected to the input port
is called the “THRU” or “THROUGH” port because all wave-
lengths of light pass through this port except for those which
the resonator bank are designed to block. The transfer curve
from the input port to the through port of one of these resona-
tors can be described using the following equation[19]:

TThru =
�ar�2 − 2r2a cos�ϕ� � r2

�ar�2 − 2r2a cos�ϕ� � �r2a�2 , �19�

where r is the self-coupling coefficient for the resonator, a is the
loss resulting from the ring and directional coupler, and ϕ enc-
odes the ratio of the input wavelength with respect to the on-
resonance wavelength of the resonator. This ratio can be
expressed as

ϕ =
4π2dneff

λ
, �20�

where d is the diameter of the MRR, neff is the effective index of
refraction between the MRR and the surrounding cladding, and
λ is the wavelength of the input light[19].
The third port of interest for the design is called the “DROP”

port because it only passes the wavelengths of light that are
blocked from the through port by the resonators. The transfer
curve from the input port to the drop port of one MRR can
be described using the following equation:

TDrop =
�1 − r2�2a

�ar�2 − 2r2a cos�ϕ� � �r2a�2 : �21�

To modulate the weight applied by an MRR to a laser input
with a given wavelength, electrical current can be passed through
a heating element positioned above the MRR. This heating
increases neff for the ring, which red shifts the on-resonance
wavelength of the MRR. This continuously varies the transfer
amplitude of the corresponding wavelength, allowing the weight
applied to a properly selected wavelength as it travels to either
port to occupy the full interval �0, 1�[19].
When cascading multiple MRRs as in Fig. 5, the power that

reaches the input port of one ring is equal to the power that
passes to the through port of the last, meaning that the individ-
ual transfer curves of each ring can combine multiplicatively
with the ones before them to form the through transfer curve
for the full weight bank up until a certain ring. For the drop port,
the transfer curve for the power added to the channel from each
ring can be expressed as the product of all of the previous MRRs’
through port transfer curves and the corresponding ring’s
drop port transfer curve. Individual drop port powers combine
additively and have small but non-negligible through-port

Fig. 5. Micrograph of a 4-ring single-pole through-drop resonator weight
bank with schematics showing control, input, and output signals[56].
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interactions with the other MRRs while traveling back toward
the weight bank’s drop port. Both of these transfer curves are
passive and positive (constrained on �0, 1�), so the resulting
powers are commonly subtracted from one another using a bal-
anced photodiode (BPD) to allow the corresponding wavelength
weights to occupy the interval �−1, 1�. The resulting inner prod-
uct of a given inference is then represented as an electrical cur-
rent, which can then be scaled, activated, or otherwise processed
into an output that can be cascaded into the next layer[19].
A schematic of this dot product method applied in a photonic

neural network is shown in Fig. 6. This architecture encodes its
input and output signals as photonic spike trains, with the spike
rate being representative of the static value for that signal. The
output is multiplexed back into the input bus by a static MRR
fabricated to match its on-resonance wavelength with one of
the inputs. This mostly stops that wavelength of input from
passing the PNN and continuing on, while simultaneously cou-
pling the new output signal at that wavelength back into the
channel. This architecture is intended to be included as part
of an all-to-all networking and processing system, so the remain-
ing input wavelengths are intended to be passed on as they are
for another PNN to use. Architectures that are intended to
implement feed-forward software models tend to forgo the par-
tial drop coupler, as the input wavelengths are meant to be
replaced in parallel rather than serially. Additionally, a variety
of output circuits are used, ranging from excitable lasers for spik-
ing networks[15,27,37], to MRR laser amplitude modulators for
constant value networks[28,36], to transimpedance amplifiers
that drive electrical loads with either signal format[18,19,35]. The
optimal output technology depends on the layer of neural net-
work being accelerated, the overall size of the network, the
nature of the input data, and the intended use for the output
data. A neural optical fiber signal processor, for example, might
work best with an optical output, where one that processes radio
frequency signals by converting them to optical signals would
be better off using a transimpedance amplifier.
The implementation of through-drop resonator weight banks

in neural networks brought photonic neuromorphic computing
into an age where common software models were able to be
implemented in the photonic domain without much restructur-
ing. To prove that this was the case, a number of researchers
sought to solve common software problems like the MNIST
handwritten digit recognition problem[58] with simulated PNN
hardware[19–21]. This emergence also led to one of the first
of many plausible real-world applications for this technology:
fiber nonlinearity compensation for long-haul transmission sys-
tems[13]. This is a technique that compensates for nonlinear
behaviors in optical fibers that limit communication capacity
further than Shannon’s theorem. The model that implements
this compensation function is relatively simple (about 10 neu-
rons), so it is easily implemented using all-analog PNN circuits
in a feed-forward configuration. In addition, the high weight
precision of single-pole MRR weight banks allowed for the com-
putations to be done with constant value networks akin to tradi-
tional software models and showed very little deviation from
software in doing so. This advancement enabled Q-factor

improvements within 0.1 dB of that of the software model for
a 10,080-km transmission fiber and demonstrates the increas-
ingly real potential for real-time neural signal processing tech-
niques in optical communication systems.
While the introduction of through-drop resonator banks

drastically increased the scalability of PNNs physically, the tech-
nology is not without limits itself. In the case of single-pole filter
banks, the major factor limiting scalability is the width of the
resonance notches each filter introduces into the weight bank’s
transfer curve. These notches are inverse-periodic over wave-
length, meaning that there is a finite amount of optical spectrum
over which it is feasible to place inference wavelengths. With
notches spanning as wide as 1 nm when tuned and harmonic
notches being spaced by less than 10 nm for a given ring at
manufacturable sizes[19], this limit is approached rather rapidly
when attempting to represent even the simplest of deep neural
networks. One way researchers have attempted to circumvent
this limit is by using multi-pole filters to achieve sharper notches
in the optical spectrum[15,57]. By using the drop port of one ring
as the input port of another with the same on-resonance point
in the area of interest, the suppressing effects of slightly off-
resonance wavelengths are compounded such that the notch-
filtering effect is much more localized (e.g., 0.5 nm instead of
1 nm). This theoretically allows for amuch higher order of wave-
length divisionmultiplexing in the circuit, though it comes at the
cost of precision. Because the spectral notch being traversed is
much sharper, a small change in refractive index results in a
far larger change in transmission amplitude, meaning that ther-
mal noise will cause weight deviations much larger than those
seen in single-pole filters.
Another method of scaling PNNs is through the use of time-

division multiplexing (TDM)[18,19]. Because each multiply-
accumulate (MAC) operation in a neural network layer is
independent of any other, it is possible to represent a layer
mathematically as the sum of the outputs of many smaller
layers. This realization enables PNNs to represent arbitrarily
deep neural networks by performing many sub-layer inferences
and summing the results of each inference digitally. While this
limits the throughput by the speed of digital sampling circuitry,
it does not meaningfully sacrifice precision, and it enables the
parallel performance of anywhere from tens to hundreds
of MAC operations at once with calculation rates as high as
5 × 109 samples per second[18,19], with potential to increase that
throughput as the capacity of sampling and generating circuitry
increases[59].

Fig. 6. Schematic of a through-drop resonator based photonic neuromorphic
circuit[17].
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A block diagram for a system that implements this architec-
ture is shown in Fig. 7. These kinds of architectures would come
to be known as digital electronic and analog photonic (DEAP)
architectures[19], as they are the first methods of photonic neural
acceleration that are not all-analog in nature. These architec-
tures are particularly effective for accelerating convolutional
neural network (CNN) layers, as these models implement a
small amount of weights which must be applied to a large
amount of inputs. This allows for very effective multi-circuit
parallelism via resistor voltage adders in addition to TDM, ena-
bling inference on par with, if not exceeding, that of high end
GPU technology[19]. Further specializing the circuit for CNN
acceleration through optical patching enables these architec-
tures to accelerate the scheduling tasks associated with CNN
inference as well as the computational tasks[20,21] showing
potential for model-specific neuromorphic acceleration.

4.2. Phase change material methods

While MRR resonance tuning shows promise for implementing
MAC operations at high speeds, the excess optical bandwidth
necessary to accommodate this tuning still heavily limits the
number of weights a PNN is capable of representing. To circum-
vent this limitation, an attenuator must be used that is still
WDM-compatible, but that does not require tuning of the
spectral response of the filter. One very effective method of
implementing this behavior is by using elements made from
phase-change materials (PCMs) like Ge2Sb2Te5 (GST) in the
waveguides of the circuit[22,23,34]. These elements change their
attenuation constant over length by optically varying their state
from crystalline to amorphous[34]. This method drastically
reduces the footprint of PNN circuits, as the attenuating element
need not occupy any more space than the waveguide in which
it is placed, and no supporting electronics are necessary to vary
its attenuation constant. In addition, because the attenuation
mechanism does not involve interferometry, it is relatively wave-
length-independent in the spectral area of interest for photonic
neuromorphic computing, so it can be used in WDM-based cir-
cuits without trading off multiplexing density for precision.
A diagram of a photonic circuit that takes advantage of these

elements is shown in Fig. 8. As this figure illustrates, the GST
elements can be embedded into anMRR to variably weigh a spe-
cific wavelength without having to change the on-resonance
point of the resonator. Instead, the imaginary part of the refrac-
tive index of the element is tuned by varying the concentration
of crystalline structures in the element, changing the amount

of optical power that it absorbs as it is passed. This varying of
concentration can be achieved by transmitting short, high
energy optical pulses through the channel, heating the element,
and annealing it slightly. As it is annealed, the element loss goes
up, decreasing the deconstructive interference caused by the
MRR and increasing the transmission amplitude of the on-
resonance wavelength. To fully re-amorphize the element, a
longer high energy pulse is transmitted, melting the crystal
momentarily and causing its molecules to de-align as it re-
freezes. To infer with the element, the corresponding input
can be encoded using an optical power below a certain threshold
of the material for which the optical power is insufficient to
anneal the GST. This will allow the variable weighting to take
place without changing the implemented weight as it is read.
In the current state of the art, this switching process can be
repeated at rates of up to 1 GHz and has not been measured
to meaningfully change in attenuation amount or precision as
it is repeated[22]. Electrical methods of programming these mod-
ules have also been explored, with the most successful attempts
leveraging graphene heaters for their fast transient responses to
thermal change[60]. These methods are slower to program, with
crystallization taking roughly 50 μs and amorphization taking
roughly 500 ns, but the required switching energy has been
reduced significantly, with experimental results reporting fac-
tors on the order of attojoules per cubic nanometer. In addition,
they can make for more elegant and compact circuit design by
way of allowing the control signals to be routed through the
metal layers instead of the silicon layers.
Because these elements are programmed with optical pulses,

they show particular promise for enabling all-optical spiking
networks that are small enough in footprint to be potentially
small enough to be fabricated in full[22,23]. One such design,
detailed in Ref. [23], uses an MRR-embedded GST element to
time-integrate the optical pulses and release an output spike
when a threshold is reached before being re-amorphized by
the output channel optical power. This interaction operates sim-
ilarly to that of a graphene-based excitable laser[15] but without
requiring any domain conversion or any supporting electronic
circuitry. The weight bank of this architecture is designed for
WDM and is fully compatible with higher order notch filters
that are not as limited in fan-in as the single-pole filters depicted
in the schematic.
Further illustrating the potential of phase-change materials

for increasing fan-in of PNNs, another research group was able
to demonstrate the use of GST elements in a constant value

Fig. 7. Block diagram of a scalable digital electronic and analog photonic
neuromorphic processor[59].

Fig. 8. Schematic of a WDM-compatible GST-based attenuator bank[22].
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DEAP-PNN using a crossbar architecture similar to that of
memristor crossbars[61]. This design, shown in Ref. [24], lever-
ages a comb generator to create massiveWDMchannels without
the need for MRR coupling. These channels are broadcast across
a matrix of GST-based weights, coupled into common output
fibers, and sampled simultaneously by ADCs to complete a full
(or partial) matrix multiplication in one pass[24].
While the drastic increase in potential fan-in is a promising

result for these phase-change material attenuators, the current
state of the art for these methods is still limited in ways that pre-
vent them from dominating the field. The greatest limitation at
present is the precision, which has been stated to be as small as
3–5 bits[24,34], in comparison to single-pole MRR attenuators’
5–9 bits[19,43]. This drastically reduces the accuracy to software
of any models being implemented with these technologies.
In addition, the switching speed of the GST elements has thus
far been capped at 1 GHz[24], whereas MRRs are capable of
switching at rates above 10 GHz, with the inference speed only
being capped by the 5 GSa/s ADCs andDACs being used in their
control circuitry[19]. This means that, while GST-based PNNs
are capable of many more parallel inferences than MRR-based
ones, they are limited in inference repetition rate for inferences
with different weight matrices. That said, for models like CNNs
that apply the same weights to a large number of inputs, the non-
volatility of GST attenuators can enable similar inference times
in GST-based DEAP architectures to that of MRR-based DEAP
architectures with the benefits of the increased fan-in as well.
Further work to improve the precision of these devices shows
potential for dominating the CNN-acceleration and all-optical
computing subfields of photonic neuromorphic computing.
One of the unique advantages of PCM-based methods is

the inherent time-dependence of inferring on them. They are
designed to partially anneal when optical power is applied to
them, meaning that inference signals will change the weight that
is being applied to them. Most designers choose to only use
inference signals with low amplitudes for this reason, as it
ensures a more stable weight matrix when performing a deter-
ministic inference. However, with the proper consideration, this
is a phenomenon that can be leveraged to the designer’s advan-
tage. Recent work has demonstrated the ability of PCM-based
weight banks to apply a form of recurrence to the network, pro-
viding context from previous time intervals in the processing of
the present signals[62]. This innovation allowed the research
group to classify time series signals in a neural reservoir without
windowing the input, leaving only the time dependence in the
circuit to the PCM cells.

4.3. Comparisons and universal advancements

For a tangible comparison between the through-drop resonator
and PCMmethods, Table 1 has been compiled from the resour-
ces detailing each device’s operation[19,21,22,24,63], illustrating the
power consumption, inference rate, and circuit area of the pro-
posed architecture. The MRR-bound PCM architectures were
mainly explored in time-invariant simulations, so the footprint
of the circuit and the inference rate are not reported. In addition,

the technologies were made at different times in the develop-
ment of photonic integrated circuit sciences and with different
budgets for implementation, meaning that different modulator
speeds were achievable when each circuit was tested. The values
reported reflect the physical implementations used to test the
architectures, not the physical limits of the technologies in the
current state of the art. This table shows the PCM crossbar archi-
tecture to be unrivaled in its power efficiency, and it achieves a
high inference rate, making it favorable for large scale integra-
tion and deployment as a coprocessor in a system-on-chip archi-
tecture. The OCNN architecture is shown to have the highest
observed compute density, while still reducing the power con-
sumption over DEAP without optical patching. This, coupled
with the higher precision capabilities of through-drop resonator
methods, makes this architecture more favorable for cloud com-
puting services. The MRR-bound PCM architectures are imple-
mented as all-optical spiking networks and claim that their main
advantage is footprint reduction. For reference, while no physi-
cal device characteristics were measured and reported, the simu-
lated MRRs were given radii from 1.5 to 1.59 μm.[22]

As with any new computing paradigm, device reliability is an
important factor to consider, as too frequent failures can negate
most or all of the benefits associated with the technology. The
reliability of MRR weight banks has been explored thoroughly,
considering non-idealities from all portions of the circuit[43].
The most common failure of MRRs is in the thermal drift, where
deviations as much as 1 K can render an MRR unusable with its
intended input wavelength[64]. This can be compensated for by
feedback control, which measures temperature and optical
power to dynamically compensate for changes in temperature
over time, or by a dithering scheme, which actively pre-distorts
the tuning signal to compensate for low frequency drifts during
operation. Another common non-ideality of these devices is
inter-channel crosstalk, which is where the tuning signals of one
MRR affect the resonance point of those physically adjacent to it.
This can be compensated for by creating a multi-dimensional
control scheme, where the tuning signals of all devices are con-
sidered when modifying the weight of any one device[43,65].
The switching endurance of the PCM elements is one of the

limiting factors of the long-term operation of neuromorphic
technologies made with them. As the elements are switched
from crystalline to amorphous and back, the structure of the
device degrades and the switching becomes less precise to

Table 1. Comparison of Power, Performance, and Area Metrics.

Technology
under Test

Power/Energy
Consumption

Inference
Rate

Circuit
Area

DEAP 7.84 pJ/MAC 200 kMAC/s 1.1 mm2

OCNN 4.06 pJ/MAC 100 TMAC/s 23.1 mm2

PCM MRR 262 nJ/MAC – –

PCM Crossbar 17 fJ/MAC 2 TMAC/s 25.8 mm2
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control. This device degradation has been observed to occur
after as few as 107 switching cycles[66], though high quality fab-
rication standards have improved endurance to as much as 1012

cycles[67]. This progress makes PCMs a viable technology for
storage-class memory elements and in-memory computer cir-
cuits, but it means that the circuits will degrade through oper-
ation and need to be replaced. This raises particular concern
for all-optical implementations, as unmonitored devices in the
middle of the network could produce faulty inferences that
are trusted as accurate by the greater system. Before these cir-
cuits can be productized, monitoring methods for PCMs in pho-
tonic neural networks will need to be developed so that their
results can be trusted through to the end of their life cycle with-
out wasting materials by discarding them before failure occurs.
The major limiting factor of PNNs, regardless of weighing

mechanism, is the trade-off between scalability and precision.
Single-pole through-drop resonator methods suffer from wide
spectral tuning requirements that limit their scalability[19], while
double-pole methods suffer from sensitive spectral tuning that
limits their precision[15,57]. Similarly, PCMmethods are notably
superior at scaling, as the spectral response of the variable
attenuators is not changed by tuning, but they suffer from
imprecise control of the crystallization of their devices[24]. The
lack of precision in these methods is compounded upon by the
nonlinear nature of the devices, causing weights in certain
ranges to be more precisely controllable than others. Recent
works have attempted to circumvent this by training the neural
network in a manner that compensates for this lack of precision.
This method of training, called “straight through estimation”
or STE, can train nonlinearly quantized weight distributions
that are derived from the physical characteristics of the given
device. Experiments using this method in combination with
PCM architectures have achieved remarkable accuracies on
the Fashion MNIST dataset[68] while quantizing the weight
distribution to only 2 nonlinear bits[69] and have even imple-
mented a CNN that achieves satisfactory accuracy on the
MNIST Handwritten Digits dataset[58] with a precision of only
1 bit[70]. These methods have the potential to improve the
robustness of imprecise PNNs, allowing for a higher level of
scalability at little cost to the final accuracy of the network.
To examine the effects of precision and architecture on the

accuracy of PNNs, Table 2 is assembled from the resources
detailing each device and technique, showing the model’s effec-
tive number of bits, the test benchmark used to evaluate it, and
the resulting classification accuracy[19,21,22,24,63,69,70]. The preci-
sion used in the OCNN experiment was not reported alongside
its accuracy, so it could not be reported here. However, it is rea-
sonable to assume that the precision is similar to that of the
DEAP architecture because it uses the same tunable attenuator
technology. The most significant result of this comparison is the
degree to which limited precision training methods improve
classification accuracy on limited precision models. It is shown
that the binary PNN detailed in Ref. [70] performs better on the
handwritten digit’s dataset than the traditionally trained PCM
crossbar architecture that has 5 bits of precision to leverage.

Furthermore, with only 2 bits of precision, the network trained
with STE out-performed every other network in the study with
a more challenging classification problem[68]. This is evidence
that support from software can drastically improve the quality
of PNNs without any necessary hardware improvements.
Comparing the traditionally trained models, the largest devia-
tion is seen in the PCM crossbar architecture. This could be
due to the fact that this test was conducted experimentally,
rather than in simulation[24].
The next worst performing architecture, OCNN, does share

the similarity with the crossbar architecture of using partial
drop splitters to couple the light into each compute element,
so it is also possible that this method of broadcasting is a source
for error in the circuits. Further exploration would need to
be done into this pattern for any reliable conclusions to be
made, especially considering the missing information regarding
the OCNN architecture. It is interesting to note that the PCM-
embedded MRR architecture performed similarly to the DEAP
architecture. This may suggest that the quiescent point for loss
of accuracy due to quantization is below 4 bits, though more
challenging classification tasks may be more sensitive to this
parameter.
Another innovation that benefits both technologies is the

implementation of pooling layers in photonic circuits. These
layers serve the purpose of compressing data in software convo-
lutional networks, both increasing the throughput of otherwise
data-heavy models and removing excess entropy that can con-
fuse the model. The two most popular kinds of pooling layer in
computer vision are average pooling layers, which return the
arithmetic mean of the input to the kernel, and max pooling,
which returns the maximum value provided to the kernel.
Average pooling, which is analogous to a convolution kernel
of uniform weights inversely proportional to its size, is more
convenient for analog implementations. It has been demon-
strated to work well as implemented in anMZI mesh[71], though
any photonic tensor or vector processor with sufficient precision
should be able to implement it with the same expectation of suc-
cess. The weights of the kernel are also not trainable parameters.
Thus, it is possible, andmaybe even advantageous, to implement
the layer with fixed attenuators. Max pooling is a more difficult

Table 2. Comparison of Accuracies and Effective Precisions.

Technology
under Test

Effective Number
of Bits

Test
Benchmark

Accuracy
(%)

DEAP 6 MNIST 98.00

OCNN – MNIST 97.00

PCM MRR 4 MNIST 97.85

PCM crossbar 5 MNIST 95.30

Clustered PCM MRR 2 Fashion MNIST 99.30

Binary MRR 1 MNIST 97.29
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function to implement in photonic circuitry, as the vast majority
of photonic tensor processors do not have any input amplitude
dependence associated with their weights. This function can be
implemented on pairs of inputs using a novel circuit that taps off
a small portion of optical power from each input into a bipolar
photodiode. The current from the photodiode is converted to
a voltage and clamped before being used to modulate MRRs
further down the optical path. With the MRRs positioned sym-
metrically around the wavelength of operation, this architecture
will gate the input of lesser power by shifting the corresponding
MRR’s on-resonance point over the top of its wavelength.
Chaining multiple copies of this circuit can allow for larger ker-
nels, and the use of high frequency ringmodulators can allow for
single-comparison throughputs in the tens of gigasamples per
second[72]. The creation of both of these architectures is a step
toward a generalized photonic computer vision coprocessor.

5. Conclusion

Computational photonic circuits offer a wide range of advan-
tages that enable powerful technologies in the field of analog
computing. Photonic blind-source separation is capable of man-
aging wideband interference between signals within the same
carrier frequency without requiring high-speed sampling cir-
cuitry. This enables work on free-space optical communication
networks, high-dimensionality multiplexing, and sensor inter-
ference cancellation. Optical steganography is capable of trans-
mitting stealth channels in a public communication network
that do not appear to carry meaningful information unless con-
fidential criteria are met. This enables communication systems
with varying degrees of information security and data capacity
and is fully compatible with data security methods in the higher
layers of the communication networks. Photonic neural net-
works are capable of performing neural network computation
in analog, with varying degrees of speed, scalability, and accu-
racy to software. These networks enable deeper, more complex
networks to be used on more time-sensitive applications, as well
as enabling shallower networks to infer on continuous signals up
into the fiber communication band.
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